Probability and Statistics I

STAT $3600-Fall\ 2021$

Le Chen lzc0090@auburn.edu

Last updated on

July 4, 2021

Auburn University Auburn AL

Chapter 4. Bivariate Distributions

Chapter 4. Bivariate Distributions

$\$ 4.1 Bivariate Distributions of the Discrete Type

- § 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- § 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Definition 4.1-1 Let X and Y be two random variables defined on a discrete probability space. Let S denote the corresponding two-dimensional space of X and Y, the two random variables of the discrete type. The probability that X = x and Y = y is denoted by

$$f(x, y) = \mathbb{P}(X = x, Y = y).$$

The function f(x, y) is called the *joint probability mass function (joint pmf)* of X and Y and has the following properties: (a) $0 \le f(x, y) \le 1$. (b) $\sum \sum_{(x,y)\in S} f(x, y) = 1$. (c) $\mathbb{P}[(X, Y) \in A] = \sum \sum_{(x,y)\in A} f(x, y)$, where A is a subset of the space S. Definition 4.1-2 The *joint cdf* of a discrete bivariate r.v. (X, Y) is given by

$$F_{XY}(x,y) = \mathbb{P}(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_i \le y} f(x_i, y_i).$$

Example 4.1-1 Consider an experiment of tossing a fair coin twice. Let (X, Y) be a bivariate r.v., where X is the number of heads that occurs in the two tosses and Y is the number of tails that occurs in the two tosses.

- (a) What is the range R_X of X?
- (b) What is the range R_Y of Y?
- (c) Find the range R_{XY} of (X, Y).

(d) Find $\mathbb{P}(X = 2, Y = 0)$, P(X = 0, Y = 2) and $\mathbb{P}(X = 1, Y = 1)$.

Example 4.1-2 Roll a pair of unbiased dice. For each of the 36 sample points with probability 1/36, let X denote the smaller and Y the larger outcome on the dice. For example, if the outcome is (3, 2), then the observed values are X = 2, Y = 3. The event $\{X = 2, Y = 3\}$ could occur in one of two ways - (3, 2) or (2, 3)- so its probability is

$$\frac{1}{36} + \frac{1}{36} = \frac{2}{36}$$

If the outcome is (2, 2), then the observed values are X = 2, Y = 2. Since the event $\{X = 2, Y = 2\}$ can occur in only one way, $\mathbb{P}(X = 2, Y = 2) = 1/36$. The joint pmf of X and Y is given by the probabilities

$$f(x, y) = \begin{cases} \frac{1}{36}, & \text{if } 1 \le x = y \le 6\\ \frac{2}{36}, & \text{if } 1 \le x < y \le 6 \end{cases}$$

when x and y are integers.

Definition 4.1-3 Let X and Y have the joint probability mass function f(x, y) with space S. The probability mass function of X alone, which is called the *marginal probability mass function of X*, is defined by

$$f_1(\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}) = \sum_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}) = \mathbb{P}(\mathbf{X} = \mathbf{x}), \qquad \mathbf{x} \in \mathcal{S}_1$$

where the summation is taken over all possible *y* values for each given *x* in the *x* space S_1 . That is, the summation is over all (x, y) in *S* with a given *x* value.

Similarly, the marginal probability mass function of Y is defined by

$$f_2(\mathbf{y}) = f_{\mathbf{Y}}(\mathbf{y}) = \sum_x f(x, \mathbf{y}) = \mathbb{P}(\mathbf{Y} = \mathbf{y}), \qquad \mathbf{y} \in \mathcal{S}_2,$$

where the summation is taken over all possible *x* values for each given *y* in the *y* space S_2 .

Definition 4.1-4 The random variables *X* and *Y* are *independent* if and only if

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y), \qquad \forall x \in S_1, \quad y \in S_2$$

or equivalently,

$$f(\mathbf{x},\mathbf{y}) = f_1(\mathbf{x})f_2(\mathbf{y}), \quad \forall \mathbf{x} \in S_1, \quad \mathbf{y} \in S_2.$$

Otherwise *X* and *Y* are said to be *dependent*.

Example 4.1-3 Let the joint pmf of X and Y be defined by

$$f(x, y) = \frac{x + y}{32}, \qquad x = 1, 2, \quad y = 1, 2, 3, 4.$$

(a) Find f₁(x), the marginal pmf of X.
(b) Find f₂(y), the marginal pmf of Y.
(c) Find P(X > Y).
(d) Find P(Y = 2X).
(e) Find P(X + Y = 3).
(f) Find P(X ≤ 3 - Y).
(g) Are X and Y independent or dependent? Why or why not? Ans.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Example 4.1-4 The joint pmf of a bivariate r.v. (X, Y) is given by

$$f(x, y) = \begin{cases} k(2x + y), & \text{if } x = 1, 2; y = 1, 2\\ 0, & \text{otherwise.} \end{cases}$$

where k is a constant.

(a) Find the value of k.

(b) Find the marginal pmf's of X and Y.

(c) Are X and Y independent?

Ans.

(a)

(b)

(c)

Definition 4.1-5 If X_1 and X_2 are random variables of discrete type with the joint pmf $f(x_1, x_2)$ on the space S. If $u(X_1, X_2)$ is a function of these two random variables, then

$$\mathbb{E}[u(X_1, X_2)] = \sum \sum_{(x_1, x_2) \in S} u(x_1, x_2) f(x_1, x_2),$$

if it exists, is called the *mathematical expectation (or expected value)* of $u(X_1, X_2)$.

Example 4.1-5 There are eight chips in a bowl: three marked (0, 0), two marked (1, 0), two marked (0, 1), and one marked (1, 1). A player selects a chip at random and is given the sum of the coordinates in dollars. If X_1 and X_2 represent those two coordinates, respectively, their joint pmf is

$$f(x_1, x_2) = \frac{3 - x_1 - x_2}{8}, \quad x_1 = 0, 1; x_2 = 0, 1.$$

Find the expected payoff.

Solution. Let $u(X_1, X_2) = payoff = \$(X_1 + X_2)$. Thus, the expected payoff is given by

$$E(u(X_1, X_2)) = \mathbb{E}(X_1 + X_2) = \sum_{x_2=0}^{1} \sum_{x_1=0}^{1} (x_1 + x_2) \left(\frac{3 - x_1 - x_2}{8}\right)$$
$$= (0) \left(\frac{3}{8}\right) + (1) \left(\frac{2}{8}\right) + (1) \left(\frac{2}{8}\right) + (2) \left(\frac{1}{8}\right)$$
$$= \frac{3}{4}.$$

That is, the expected payoff is 75 cents.

The following mathematical expectations, if they exist, have special names:

(a) If $u_1(X_1, X_2) = X_i$, then

$$\mathbb{E}[\boldsymbol{u}_1(\boldsymbol{X}_1,\boldsymbol{X}_2)] = \mathbb{E}(\boldsymbol{X}_i) = \mu_i$$

is called the mean of X_i , i = 1, 2.

(b) If $u_2(X_1, X_2) = (X_i - \mu_i)^2$, then $\mathbb{E}[u_2(X_1, X_2)] = \mathbb{E}[(X_i - \mu_i)^2] = \sigma_i^2 = Var(X_i)$

is called the variance of X_i , i = 1, 2.

Remark 4.1-1 The mean μ_i and the variance σ_i^2 can be computed either from the joint pmf $f(x_1, x_2)$ or from the marginal pmf $f_i(x_i)$, i = 1, 2.

We now extend the binomial distribution to a trinomial distribution. Here we have three mutually exclusive and exhaustive ways for an experiment to terminate: perfect, "seconds," and defective. We repeat the experiment n independent times, and the probabilities $p_1, p_2, p_3 = 1 - p_1 - p_2$ of perfect, seconds, and defective, respectively, remain the same from trial to trial. In the n trials, let X_1 =number of perfect items, X_2 = number of seconds, and $X_3 = n - X_1 - X_2$ = number of defectives. If x_1 and x_2 are nonnegative integers such that $x_1 + x_2 \le n$, then the probability of having x_1 perfect, x_2 seconds, and $n - x_1 - x_2$ defectives, in that order, is

$$(p_1^{x_1}p_2^{x_2}(1-p_1-p_2)^{n-x_1-x_2})$$

However, if we want $\mathbb{P}(X_1 = x_1, X_2 = x_2)$, then we must recognize that $X_1 = x_1, X_2 = x_2$ can be achieved in

$$\binom{n}{x_1, x_2, n - x_1 - x_2} = \frac{n!}{x_1! x_2! (n - x_1 - x_2)!}$$

different ways. Hence, the trinomial pmf is given by

$$f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2) = \frac{n!}{x_1! x_2! (n - x_1 - x_2)!} p_1^{x_1} p_2^{x_2} (1 - p_1 - p_2)^{n - x_1 - x_2};$$

where x_1 and x_2 are nonnegative integers such that $x_1 + x_2 \leq n$. Without summing, we know that X_1 is $b(n, p_1)$ and X_2 is $b(n, p_2)$; thus, X_1 and X_2 are dependent, as the product of these marginal probability mass function is not equal to $f(x_1 + x_2)$

15

Example 4.1-6 A manufactured item is classified as good, a "second," or defective with probability 6/10, 3/10, and 1/10, respectively. Fifteen such items are selected at random from the production line. Let X denote the number of good items, Y the number of seconds, and 15 - X - Y the number of defective items.

(a) Give the joint pmf of X and Y, f(x, y).

(b) Sketch the set of points for which f(x, y) > 0. From the shape of this region, can X and Y be independent? Why or why not?

(c) Find $\mathbb{P}(X = 10, Y = 4)$.

(d) Give the marginal pmf of X.

(e) Find $\mathbb{P}(X \leq 11)$.

Ans.

(a) $f(x, y) = \frac{15!}{x! y! (15 - x - y)!} (0.6)^x (0.3)^y (0.1)^{n - x - y}$

(b) no, because the space is not rectangular.

(c) 0.0735.

(d) X is b(15, 0.6).

(e) 0.9095.

Exercises from textbook: 4.1-2, 4.1-3, 4.1-4, 4.1-5, 4.1-6, 4.1-8,

Chapter 4. Bivariate Distributions

§ 4.1 Bivariate Distributions of the Discrete Type

- $\$ 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- § 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Definition 4.2-1 The *covariance* of X and Y, denoted by Cov(X, Y) or σ_{XY} , is defined by

$$\operatorname{Cov}(X, Y) = \sigma_{XY} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

If Cov(X, Y) = 0, then we say that X and Y are *uncorrelated*. X and Y are uncorrelated if and only if

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

Remark 4.2-1 Note that if X and Y are independent, then it can be show that they are uncorrelated, namely,

independent \Rightarrow uncorrelated.

However, the converse is not true in general; that is, the fact that X and Y are uncorrelated does not, in general, imply that they are independent:

independent < uncorrelated.

Definition 4.2-2 For two random variables X and Y, the *correlation coefficient*, denoted by ρ_{XY} , is defined by

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

$$|\rho| \leq 1$$
 or $-1 \leq \rho \leq 1$.

Remark 4.2-3 Note that the correlation coefficient of X and Y is a measure of linear dependence between X and Y. The *least square regression line* (the line that describes linear relationship between X and Y) is given by

$$\mathbf{y} = \mu_{\mathbf{Y}} + \rho_{\mathbf{X}\mathbf{Y}} \frac{\sigma_{\mathbf{Y}}}{\sigma_{\mathbf{X}}} \left(\mathbf{x} - \mu_{\mathbf{X}} \right).$$

Example 4.2-1 Let X and Y have the joint pmf

$$f(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} + \mathbf{y}}{32}, \quad \mathbf{x} = 1, 2, \mathbf{y} = 1, 2, 3, 4.$$

Find the mean μ_X and μ_Y , the variances σ_X^2 and σ_Y^2 , the correlation coefficient ρ , and the equation of the least square regression line. Are X and Y independent?

Ans: $\mu_X = 25/16$ $\mu_Y = 45/16$ $\sigma_X^2 = 63/256$ $\sigma_Y^2 = 295/256$ Cov(X, Y) = -5/256 $\rho = -0.0367$ dependent. Example 4.2-2 Let X and Y be random variables of the continuous type having the joint pdf

$$f(\mathbf{x}, \mathbf{y}) = 2, \quad 0 \le \mathbf{y} \le \mathbf{x} \le 1.$$

(a) Find the marginal pdf of X and Y.

(b) Compute $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \text{Cov}(X, Y), \text{and } \rho$.

(c) Determine the equation of the least square regression line. Ans:

(a) $f_1(x) = 2x$ for $0 \le x \le 1$; $f_2(y) = 2(1 - y)$; (b) $\mu_X = \mathbb{E}(X) = 2/3$ and $\mu_Y = \mathbb{E}(Y) = 1/3$.

Exercises from textbook: 4.2-1, 4.2-2, 4.2-3, 4.2-7, 4.2-9.

Chapter 4. Bivariate Distributions

- § 4.1 Bivariate Distributions of the Discrete Type
- § 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- § 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Definition 4.3-1 Let X and Y have a joint discrete distribution with pmf f(x, y) on space S. Say the marginal probability mass functions are $f_1(x)$, and $f_2(y)$ with space S_1 and S_2 , respectively. The *conditional probability mass function of X*, given that Y = y, is defined by

$$g(x|y) = rac{f(x,y)}{f_2(y)}$$
 provided that $f_2(y) > 0$.

Similarly, the *conditional probability mass function of Y*, given that X = x, is defined by

$$h(y|x) = \frac{f(x,y)}{f_1(x)}$$
 provided that $f_1(x) > 0$.

Definition 4.3-2 If (X, Y) is a discrete bivariate r.v. with joint pmf f(x, y), then the *conditional mean (or conditional expectation)* of Y, given that X = x, is defined by

$$\mu_{Y|x} = \mathbb{E}(Y|x) = \sum_{y} yh(y|x),$$

and the *conditional variance* of Y, given that X = x, is defined by

$$\sigma_{Y|x}^2 = \mathbb{E}\{[Y - \mathbb{E}(Y|x)]^2 | x\} = \sum_{y} [y - \mathbb{E}(Y|x)]^2 h(y|x)$$

which can be reduced to

$$\operatorname{Var}(Y|x) = \sigma_{Y|x}^2 = \mathbb{E}(Y^2|x) - [E(Y|x)]^2 = \mathbb{E}(Y^2|x) - (\mu_{Y|x})^2.$$

Example 4.3-1 Let *X* and *Y* have a uniform distribution on the set of points with integer coordinates in $S = \{(x, y) : 0 \le x \le 7, x \le y \le x + 2\}$. That is, f(x, y) = 1/24, $(x, y) \in S$, and both *x* and *y* are integers. (a) Find $f_1(x)$. (b) Find h(y|x). (c) Find $\mu_{Y|x} = \mathbb{E}(Y|x)$. (d) Find $\sigma_{Y|x}^2$. Ans. (a) $f_1(x) = 1/8, x = 0, 1, \dots, 7$; (b) h(y|x) = 1/3, y = x, x + 1, x + 2, for $x = 0, 1, \dots, 7$; (c) $\mu_{Y|x} = x + 1, x = 0, 1, \dots, 7$. (d) $\sigma_{Y|x}^2 = 2/3$.

Exercises from textbook: 4.3-1, 4.3-2, 4.3-5, 4.3-6, 4.3-10

Chapter 4. Bivariate Distributions

- § 4.1 Bivariate Distributions of the Discrete Type
- § 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- $\$ 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Definition 4.4-1 *The joint probability density function (joint pdf)* of two continuous-type random variables is an integrable function f(x, y) with the following properties:

(a) $f(x, y) \ge 0$, where f(x, y) = 0 only when (x, y) is not in the support (space) *S* of *X* and *Y*.

(b)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$$

(c) $\mathbb{P}[(X, Y) \in A] = \iint_A f(x, y) \, dx \, dy$ where $\{(X, Y) \in A\}$ is the event defined in the plane.

Example 4.4-1 The joint pdf of a bivariate r.v. (X, Y) is given by

$$f(x, y) = \begin{cases} kxy, & \text{if } 0 < x < 1, 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

where k is a constant.

(a) Find the value of *k*.
(b) Are *X* and *Y* independent?
(c) Find P(*X* + *Y* < 1)
(d) Compute μ_X; μ_Y; σ²_X; σ²_Y. Ans.
(a) *k* = 4
(b) they are independent.

(c) 1/6.

Definition 4.4-2 If (X, Y) is a continuous bivariate r.v. with joint pdf f(x, y), then the *conditional pdf of X*, given that Y = y, is defined by

$$g(\mathbf{x}|\mathbf{y}) = rac{f(\mathbf{x},\mathbf{y})}{f_2(\mathbf{y})}, \quad f_2(\mathbf{y}) > 0.$$

Similarly, the *conditional pdf of* Y, given that X = x, is defined by

$$h(y|x) = \frac{f(x,y)}{f_1(x)}, \quad f_1(x) > 0.$$

Definition 4.4-3 If (X, Y) is a continuous bivariate r.v. with joint pdf f(x, y), the *conditional mean* of Y, given that X = x is defined by

$$\mu_{Y|x} = \mathbb{E}(Y|x) = \int_{-\infty}^{\infty} yh(y|x) dy.$$

The *conditional variance* of *Y*, given that X = x, is defined by

$$\sigma_{Y|x}^{2} = Var(Y|x) = \mathbb{E}[(Y - \mu_{Y|x})^{2}|x] = \int_{-\infty}^{\infty} (y - \mu_{Y|x})^{2} h(y|x) dy$$

which can be reduced to

$$\operatorname{Var}(\boldsymbol{Y}|\boldsymbol{x}) = \mathbb{E}(\boldsymbol{Y}^2|\boldsymbol{x}) - (\mu_{\boldsymbol{Y}|\boldsymbol{x}})^2.$$

Example 4.4-2 Let $f(x, y) = 1/40, 0 \le x \le 10, 10 - x \le y \le 14 - x$, be the joint pdf of X and Y.

(a) Find $f_1(x)$, the marginal pdf of X.

(b) Determine h(y|x), the conditional pdf of Y, given that X = x.

(c) Calculate $\mathbb{E}(Y|x)$, the conditional mean of Y, given that X = x.

(d) Find $\mathbb{P}(9 \leq Y \leq 11 | X = 2)$.

Ans.

(a) $f_1(x) = 1/10, 0 \le x \le 10;$ (b) $h(y|x) = 1/4, 10 - x \le y \le 14 - x$ for $0 \le x \le 10;$ (c) $\mathbb{E}(Y|x) = 12 - x.$

Chapter 4. Bivariate Distributions

- § 4.1 Bivariate Distributions of the Discrete Type
- § 4.2 The Correlation Coefficient
- § 4.3 Conditional Distributions
- § 4.4 Bivariate Distributions of the Continuous Type
- § 4.5 The Bivariate Normal Distribution

Definition 4.5-1 A bivariate r.v. (X, Y) is called the *bivariate normal(or gaussian)* distribution if the joint pdf is given by

$$f(\mathbf{x}, \mathbf{y}) = \frac{1}{2\pi\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\sqrt{1-\rho^2}} \exp\bigg[-\frac{q(\mathbf{x}, \mathbf{y})}{2}\bigg],$$

where

$$\boldsymbol{q}(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{1-\rho^2} \left[\left(\frac{\boldsymbol{x}-\mu_X}{\sigma_X} \right)^2 - 2\rho \left(\frac{\boldsymbol{x}-\mu_X}{\sigma_X} \right) \left(\frac{\boldsymbol{y}-\mu_Y}{\sigma_Y} \right) + \left(\frac{\boldsymbol{y}-\mu_Y}{\sigma_Y} \right)^2 \right].$$

A joint pdf of this form is called a *bivariate normal pdf*.

The marginal pdf of X is

$$f_1(\mathbf{X}) = f_{\mathbf{X}}(\mathbf{X}) = \frac{1}{\sigma_{\mathbf{X}}\sqrt{2\pi}} \exp\left[-\frac{(\mathbf{X}-\mu_{\mathbf{X}})^2}{2\sigma_{\mathbf{X}}^2}\right]$$

and so the conditional distribution of Y, given that X = x, is a normal distribution with conditional mean

$$\mathbb{E}(Y|\mathbf{X}) = \mu_{Y|\mathbf{X}} = \mu_{Y} + \rho \frac{\sigma_{Y}}{\sigma_{X}} (\mathbf{X} - \mu_{X})$$

and conditional variance

$$\operatorname{Var}(\boldsymbol{Y}|\boldsymbol{x}) = \sigma_{\boldsymbol{Y}|\boldsymbol{x}}^2 = \sigma_{\boldsymbol{Y}}^2(1-\rho^2).$$

Example 4.5-1 Let X and Y have a bivariate normal distribution with parameters $\mu_X = -3$, $\mu_Y = 10$, $\sigma_X^2 = 25$, $\sigma_Y^2 = 9$, and $\rho = 3/5$. (a) Compute $\mathbb{P}(-5 < X < 5)$. (b) Compute $\mathbb{P}(-5 < X < 5 | Y = 13)$. (c) Compute $\mathbb{P}(7 < Y < 16)$. (d) Compute $\mathbb{P}(7 < Y < 16 | X = 2)$. Ans. (a) 0.6006; (b) 0.7888; (c) 0.8185; (d) 0.9371. Theorem 4.5-1 If X and Y have a bivariate distribution with correlation coefficient ρ , then X and Y are independent if and only if $\rho = 0$.

Exercises from textbook: 4.5-1, 4.5-3, 4.5-6, 4.5-7, 4.5-8.